Effects of cadmium toxicity on the morphology of Bidens pilosaL

Authors

  • Nuri Carito Vilca Valqui Instituto Nacional de Innovación Agraria (INIA), Estación Experimental Agraria Amazonas (EEA-Amazonas), Perú
  • Manuel Oliva Instituto de Investigación para el Desarrollo Sostenible de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM-A), Perú
  • Nilton B. Rojas Briceño Instituto de Investigación para el Desarrollo Sostenible de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM-A), Perú

DOI:

https://doi.org/10.55996/dekamuagropec.v3i2.100

Keywords:

Phytoremediation, accumulation, herbaceous species, foliar, root

Abstract

Cadmium is a metal that affects natural resources, plants and human beings. Therefore, different methods have been sought to mitigate the problem, one of them is phytoremediation that makes use of species that have the potential to accumulate the heavy metal in their plant tissues. The objective of this research was to evaluate the effect of cadmium toxicity on the morphology of cadmium cadmium plants (Bindes pilosa L.). The plants were planted in two types of substrate with pH 6.27 and 5.53, adding different concentrations of cadmium chloride (CdCl2) (0, 5 and 10 ppm) inside a greenhouse; where there were 6 treatments with 5 replicates, thus having 30 experimental units. Morphological parameters and Cd concentrations in the root and foliar parts were evaluated. From the results obtained, the cadillo planted in the substrate with pH 5.53 without CdCl2 had greater height with 27.18 cm, with the same substrate plus 10 ppm of CdCl2 higher values were obtained in the variables; number of shoots (16 shoots), foliar fresh weight (26.70 g), foliar dry weight (10.92 g), root fresh weight (5.77 g), root dry weight (1.04 g) and root length (26.90 mm). Regarding the accumulation of Cd in plant tissues, a higher concentration was obtained in the foliar part (7.27 ppm) and less in the root (2.57 ppm). It is concluded that this species could be useful in the phytoremediation of Cd-contaminated soils.

 

Downloads

Download data is not yet available.

References

Adrees, M., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Ibrahim, M., Abbas, F., Farid, M., Qayyum, M. F., & Irshad, M. K. (2015). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology and Environmental Safety, 119, 186–197. https://doi.org/10.1016/J.ECOENV.2015.05.011

Dai, H., Wei, S., Pogrzeba, M., Krzyżak, J., Rusinowski, S., & Zhang, Q. (2021). The cadmium accumulation differences of two Bidens pilosaL. ecotypes from clean farmlands and the changes of some physiology and biochemistry indices. Ecotoxicology and environmental safety, 209. https://doi.org/10.1016/J.ECOENV.2020.111847

El-Mahrouk, E. S. M., Eisa, E. A. H., Hegazi, M. A., Abdel-Gayed, M. E. S., Dewir, Y. H., El-Mahrouk, M. E., & Naidoo, Y. (2019). Phytoremediation of Cadmium-, Copper-, and Lead-contaminated Soil by Salix mucronata (Synonym Salix safsaf). HortScience, 54(7), 1249–1257. https://doi.org/10.21273/HORTSCI14018-19

Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17(11). https://doi.org/10.3390/IJERPH17113782

González, C., Thompson, J., Martínez, Y., & Sánchez, N. (2010). Concentración de cadmio en partículas de diferentes tamaños de un suelo de la Cuenca del Lago de Valencia. Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 25(2), 73–80. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-40652010000200008&lng=es&nrm=iso&tlng=es

Guoju, X., Fengju, Z., Juying, H., Chengke, L., Jing, W., Fei, M., Yubi, Y., Runyuan, W., & Zhengji, Q. (2016). Response of bean cultures’ water use efficiency against climate warming insemiarid regions of China. Agricultural Water Management, 173, 84–90. https://doi.org/10.1016/J.AGWAT.2016.05.010

He, S., Yang, X., He, Z., & Baligar, V. C. (2017). Morphological and Physiological Responses of Plants to Cadmium Toxicity: A Review. Pedosphere, 27(3), 421–438. https://doi.org/10.1016/S1002-0160(17)60339-4

Ismael, M. A., Elyamine, A. M., Moussa, M. G., Cai, M., Zhao, X., & Hu, C. (2019). Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11(2), 255–277. https://doi.org/10.1039/C8MT00247A

Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/J.APGEOCHEM.2019.104388

Mahajan, P., & Kaushal, J. (2018). Role of Phytoremediation in Reducing Cadmium Toxicity in Soil and Water. Journal of Toxicology, 2018. https://doi.org/10.1155/2018/4864365

Muszyńska, E., Hanus-Fajerska, E., & Ciarkowska, K. (2018). Studies on lead and cadmium toxicity in Dianthus carthusianorum calamine ecotype cultivated in vitro. Plant Biology, 20(3), 474–482. https://doi.org/10.1111/PLB.12712

Rizwan, M., Ali, S., Zia ur Rehman, M., Rinklebe, J., Tsang, D. C. W., Bashir, A., Maqbool, A., Tack, F. M. G., & Ok, Y. S. (2018). Cadmium phytoremediation potential of Brassica crop species: A review. Science of The Total Environment, 631–632, 1175–1191. https://doi.org/10.1016/J.SCITOTENV.2018.03.104

Rodríguez Albarracín, H. S., Darghan Contreras, A. E., & Henao, M. C. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional. https://doi.org/10.1016/j.geodrs.2019.e00214

Shaari, N. E. M., Tajudin, M. T. F. M., Khandaker, M. M., Majrashi, A., Alenazi, M. M., Abdullahi, U. A., & Mohd, K. S. (2022). Cadmium toxicity symptoms and uptake mechanism in plants: a review. Brazilian Journal of Biology, 84(252143), 1–17. https://doi.org/10.1590/1519-6984.252143

Sun, Y., Zhou, Q., Wang, L., & Liu, W. (2009). Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials, 161(2–3), 808–814. https://doi.org/10.1016/J.JHAZMAT.2008.04.030

Ying, R. R., Qiu, R. L., Tang, Y. T., Hu, P. J., Qiu, H., Chen, H. R., Shi, T. H., & Morel, J. L. (2010). Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. Journal of Plant Physiology, 167(2), 81–87. https://doi.org/10.1016/J.JPLPH.2009.07.005

Zhi,Y., Zhou, Q., Leng, X., & Zhao, C. (2020). Mechanism of Remediation of Cadmium-Contaminated Soil With Low-Energy Plant Snapdragon. Frontiers in Chemistry, 8, 222. https://doi.org/10.3389/FCHEM.2020.00222

Zhu, T., Li, L., Duan, Q., Liu, X., & Chen, M. (2020). Progress in our understanding of plant responses to the stress of heavy metal cadmium. https://doi.org/10.1080/15592324.2020.1836884, 16(1). https://doi.org/10.1080/15592324.2020.1836884

Published

2022-12-28

How to Cite

Vilca Valqui, N. C., Oliva , M. ., & Rojas Briceño, N. B. (2022). Effects of cadmium toxicity on the morphology of Bidens pilosaL. Revista Científica Dékamu Agropec, 3(2), 54–62. https://doi.org/10.55996/dekamuagropec.v3i2.100