Groundwater contamination by antibiotics: Review of sources, environmental factors and mobility

Authors

  • Sahury Jellitza Quispe-Durand Universidad Nacional de Moquegua
  • Franz Zirena-Vilca Universidad Nacional de Moquegua

DOI:

https://doi.org/10.55996/dekamuagropec.v6i2.331

Abstract

Groundwater contamination by antibiotics poses an emerging risk to health and ecosystems due to their increasing use and persistence. The objective of this review was to identify the main sources, environmental factors, and mechanisms that determine the presence of these compounds in aquifers. The methodology was based on PRISMA principles, with a systematic search of the ScienceDirect and Scopus databases, resulting in the analysis of 60 articles published between 2015 and 2024. It was determined that wastewater treatment plants (WWTPs), together with agricultural, livestock, industrial, and hospital activities, are the predominant sources of input. Sulfonamides, tetracyclines, fluoroquinolones, and macrolides have been detected in aquifers in Asia, Europe, and America, in some cases exceeding ecological risk values. Their mobility and persistence depend on pH conditions, soil texture, dissolved organic matter (DOM), temperature and redox conditions, which control the processes of adsorption, leaching and degradation. In conclusion, this review shows that the presence of antibiotics in aquifers is explained by the complex interaction between anthropogenic sources and environmental factors.

Downloads

Download data is not yet available.

References

Alzola-Andrés, M., Domingo-Echaburu, S., Segura, Y., Valcárcel, Y., Orive, G., & Lertxundi, U. (2023). Pharmaceuticals in hospital wastewaters: an analysis of the UBA’s pharmaceutical database. Environmental Science and Pollution Research, 30(44), 99345–99361. https://doi.org/10.1007/s11356-023-29214-0

Anh, H. Q., Le, T. P. Q., Da Le, N., Lu, X. X., Duong, T. T., Garnier, J., Rochelle-Newall, E., Zhang, S., Oh, N.-H., Oeurng, C., Ekkawatpanit, C., Nguyen, T. D., Nguyen, Q. T., Nguyen, T. D., Nguyen, T. N., Tran, T. L., Kunisue, T., Tanoue, R., Takahashi, S., … Nguyen, T. A. H. (2021). Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Science of The Total Environment, 764, 142865. https://doi.org/10.1016/j.scitotenv.2020.142865

Astaíza Martínez, J. M., Benavides Melo, C. J., López Córdoba, M. J., & Portilla Ortiz, J. P. (2014). Diagnóstico de los principales antibióticos recomendados para pollo de engorde (broiler) por los centros agropecuarios del municipio de Pasto, Nariño, Colombia. Revista de Medicina Veterinaria, 27, 99. https://doi.org/10.19052/mv.3027

Bohrer, R. E. G., Carissimi, E., Lopez, D. A. R., Wolff, D. B., Silva, D. M. da, & Prestes, O. D. (2019). Compostagem de efluente suíno no tratamento de resíduos de fármacos veterinários. Semina: Ciências Agrárias, 40(6), 2813. https://doi.org/10.5433/1679-0359.2019v40n6p2813

Booth, A., Aga, D. S., & Wester, A. L. (2020). Retrospective analysis of the global antibiotic residues that exceed the predicted no effect concentration for antimicrobial resistance in various environmental matrices. Environment International, 141, 105796. https://doi.org/10.1016/j.envint.2020.105796

Bouzid, J., Jaouhar, S., Zaid, A., Bouhlou, L., & Chahlaoui, A. (2021). Evaluation of the bacteriological and physicochemical risk of hospital effluents: case of the Mohamed V hospital in Meknes. E3S Web of Conferences, 319, 01105. https://doi.org/10.1051/e3sconf/202131901105

Cavaco, L. M., Abatih, E., Aarestrup, F. M., & Guardabassi, L. (2008). Selection and Persistence of CTX-M-Producing Escherichia coli in the Intestinal Flora of Pigs Treated with Amoxicillin, Ceftiofur, or Cefquinome. Antimicrobial Agents and Chemotherapy, 52(10), 3612–3616. https://doi.org/10.1128/AAC.00354-08

Charuaud, L., Jarde, E., Jaffrezic, A., Thomas, M.-F., & Le Bot, B. (2019). Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. Journal of Hazardous Materials, 361, 169–186. https://doi.org/10.1016/j.jhazmat.2018.08.075

Chen, L., Lang, H., Liu, F., Jin, S., & Yan, T. (2018). Presence of Antibiotics in Shallow Groundwater in the Northern and Southwestern Regions of China. Groundwater, 56(3), 451–457. https://doi.org/10.1111/gwat.12596

Choi, T.-M., Chiu, C.-H., & Chan, H.-K. (2016). Risk management of logistics systems. Transportation Research Part E: Logistics and Transportation Review, 90, 1–6. https://doi.org/10.1016/j.tre.2016.03.007

Couto, C. F., Lange, L. C., & Amaral, M. C. S. (2019). Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review. Journal of Water Process Engineering, 32, 100927. https://doi.org/10.1016/j.jwpe.2019.100927

De Mastro, F., Cacace, C., Traversa, A., Pallara, M., Cocozza, C., Mottola, F., & Brunetti, G. (2022). Influence of chemical and mineralogical soil properties on the adsorption of sulfamethoxazole and diclofenac in Mediterranean soils. Chemical and Biological Technologies in Agriculture, 9(1), 34. https://doi.org/10.1186/s40538-022-00300-8

Espíndola, J. C., & Vilar, V. J. P. (2020). Innovative light-driven chemical/catalytic reactors towards contaminants of emerging concern mitigation: A review. Chemical Engineering Journal, 394, 124865. https://doi.org/10.1016/j.cej.2020.124865

European Medicines Agency. (2018). Sales of veterinary antimicrobial agents in 30 European countries in 2016- Trens from 2010 to 2016- Eight ESVAC report. European Medicines Agency, 176. https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-30-european-countries-2016-trends-2010-2016-eighth-esvac_en.pdf%0Ahttp://www.ema.europa.eu/docs/en_GB/document_library/Report/2016/10/WC500214217.pdf

Fang, L., Zhou, Y., Huang, Z., Yang, G., Li, T., Song, C., & Chen, J. (2021). Dynamic Elimination of Enrofloxacin Under Varying Temperature and pH in Aquaculture Water: An Orthogonal Study. Bulletin of Environmental Contamination and Toxicology, 106(5), 866–872. https://doi.org/10.1007/s00128-021-03199-3

FAO. (2024). FAO AQUASTAT Dissemination System. In AQUASTAT Website. https://data.apps.fao.org/aquastat/?lang=en

Fenollar Penadés, A. (2020). Estudio de la transmisión de resistencias a antibióticos mediante métodos moleculares en el sector avícola y su implicación para la salud pública [Universitat Politècnica de València]. https://doi.org/10.4995/Thesis/10251/149399

Fu, C., Xu, B., Chen, H., Zhao, X., Li, G., Zheng, Y., Qiu, W., Zheng, C., Duan, L., & Wang, W. (2022). Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiong’an New Area, China, and their relationship with antibiotic resistance genes. Science of The Total Environment, 807, 151011. https://doi.org/10.1016/j.scitotenv.2021.151011

Garcia, J. F., Diez, M. J., Sahagun, A. M., Diez, R., Sierra, M., Garcia, J. J., López, C., & Fernandez, M. N. (2022). Availability of Antibiotics for Veterinary Use on the Internet: A Cross-Sectional Study. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.798850

Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., van de Zee, S. E. A. T. M., & Ritsema, C. J. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65. https://doi.org/10.1016/j.iswcr.2015.03.002

González-Pérez, D. M., Pérez, J. I., & Gómez, M. A. (2017). Behaviour of the main nonsteroidal anti-inflammatory drugs in a membrane bioreactor treating urban wastewater at high hydraulic- and sludge-retention time. Journal of Hazardous Materials, 336, 128–138. https://doi.org/10.1016/j.jhazmat.2017.04.059

Gothwal, R., & Shashidhar, T. (2015). Antibiotic Pollution in the Environment: A Review. CLEAN – Soil, Air, Water, 43(4), 479–489. https://doi.org/10.1002/clen.201300989

Gros, M., Catalán, N., Mas-Pla, J., Čelić, M., Petrović, M., & Farré, M. J. (2021). Groundwater antibiotic pollution and its relationship with dissolved organic matter: Identification and environmental implications. Environmental Pollution, 289, 117927. https://doi.org/10.1016/j.envpol.2021.117927

Gude, V. G., & Maganti, A. (2021). Desalination of deep groundwater for freshwater supplies. In Global Groundwater (pp. 577–583). Elsevier. https://doi.org/10.1016/B978-0-12-818172-0.00042-6

Hara, K., Kuroda, M., Yabar, H., Kimura, M., & Uwasu, M. (2016). Historical development of wastewater and sewage sludge treatment technologies in Japan – An analysis of patent data from the past 50 years. Environmental Development, 19, 59–69. https://doi.org/10.1016/j.envdev.2016.05.001

Harrower, J., McNaughtan, M., Hunter, C., Hough, R., Zhang, Z., & Helwig, K. (2021). Chemical Fate and Partitioning Behavior of Antibiotics in the Aquatic Environment—A Review. Environmental Toxicology and Chemistry, 40(12), 3275–3298. https://doi.org/10.1002/etc.5191

He, L.-Y., He, L.-K., Liu, Y.-S., Zhang, M., Zhao, J.-L., Zhang, Q.-Q., & Ying, G.-G. (2019). Microbial diversity and antibiotic resistome in swine farm environments. Science of The Total Environment, 685, 197–207. https://doi.org/10.1016/j.scitotenv.2019.05.369

Hubeny, J., Harnisz, M., Korzeniewska, E., Buta, M., Zieliński, W., Rolbiecki, D., Giebułtowicz, J., Nałęcz-Jawecki, G., & Płaza, G. (2021). Industrialization as a source of heavy metals and antibiotics which can enhance the antibiotic resistance in wastewater, sewage sludge and river water. PLOS ONE, 16(6), e0252691. https://doi.org/10.1371/journal.pone.0252691

Khurana, P., Pulicharla, R., & Kaur Brar, S. (2021). Antibiotic-metal complexes in wastewaters: fate and treatment trajectory. Environment International, 157, 106863. https://doi.org/10.1016/j.envint.2021.106863

Kivits, T., Broers, H. P., Beeltje, H., van Vliet, M., & Griffioen, J. (2018). Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environmental Pollution, 241, 988–998. https://doi.org/10.1016/j.envpol.2018.05.085

Kulik, K., Lenart-Boroń, A., & Wyrzykowska, K. (2023). Impact of Antibiotic Pollution on the Bacterial Population within Surface Water with Special Focus on Mountain Rivers. Water, 15(5), 975. https://doi.org/10.3390/w15050975

Lin, Y.-C., Lai, W. W.-P., Tung, H., & Lin, A. Y.-C. (2015). Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan. Environmental Monitoring and Assessment, 187(5), 256. https://doi.org/10.1007/s10661-015-4497-3

Liu, X., Zhang, G., Liu, Y., Lu, S., Qin, P., Guo, X., Bi, B., Wang, L., Xi, B., Wu, F., Wang, W., & Zhang, T. (2019). Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environmental Pollution, 246, 163–173. https://doi.org/10.1016/j.envpol.2018.12.005

Liu, Z., Lu, Y., Wang, P., Wang, T., Liu, S., Johnson, A. C., Sweetman, A. J., & Baninla, Y. (2017). Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and eastern China. Science of The Total Environment, 580, 1247–1256. https://doi.org/10.1016/j.scitotenv.2016.12.085

Ma, N., Tong, L., Li, Y., Yang, C., Tan, Q., & He, J. (2022). Distribution of antibiotics in lake water-groundwater - Sediment system in Chenhu Lake area. Environmental Research, 204, 112343. https://doi.org/10.1016/j.envres.2021.112343

Ma, Y., Li, M., Wu, M., Li, Z., & Liu, X. (2015). Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge. Science of The Total Environment, 518–519, 498–506. https://doi.org/10.1016/j.scitotenv.2015.02.100

McRose, D. L., & Newman, D. K. (2021). Redox-active antibiotics enhance phosphorus bioavailability. Science, 371(6533), 1033–1037. https://doi.org/10.1126/science.abd1515

Menció, A., & Mas-Pla, J. (2019). Assessing the Influence of Environmental Factors on Groundwater Antibiotic Occurrence by Means of Variation Partitioning. Water, 11(7), 1495. https://doi.org/10.3390/w11071495

Mirzaei, R., Mesdaghinia, A., Hoseini, S. S., & Yunesian, M. (2019). Antibiotics in urban wastewater and rivers of Tehran, Iran: Consumption, mass load, occurrence, and ecological risk. Chemosphere, 221, 55–66. https://doi.org/10.1016/j.chemosphere.2018.12.187

Montesdeoca-Esponda, S., Palacios-Díaz, M. del P., Estévez, E., Sosa-Ferrera, Z., Santana-Rodríguez, J. J., & Cabrera, M. del C. (2021). Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain). Water, 13(3), 262. https://doi.org/10.3390/w13030262

Navarro, T. (2018). Water reuse and desalination in Spain – challenges and opportunities. Journal of Water Reuse and Desalination, 8(2), 153–168. https://doi.org/10.2166/wrd.2018.043

Nkoh, J. N., Shang, C., Okeke, E. S., Ejeromedoghene, O., Oderinde, O., Etafo, N. O., Mgbechidinma, C. L., Bakare, O. C., & Meugang, E. F. (2024). Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. Journal of Environmental Management, 354, 120312. https://doi.org/10.1016/j.jenvman.2024.120312

Oliveira, T. S., Al Aukidy, M., & Verlicchi, P. (2017). Occurrence of Common Pollutants and Pharmaceuticals in Hospital Effluents (pp. 17–32). https://doi.org/10.1007/698_2017_9

Pan, M., & Chu, L. M. (2017). Fate of antibiotics in soil and their uptake by edible crops. Science of The Total Environment, 599–600, 500–512. https://doi.org/10.1016/j.scitotenv.2017.04.214

Patyra, E., Nebot, C., Gavilán, R. E., Kwiatek, K., & Cepeda, A. (2023). Prevalence of veterinary antibiotics in natural and organic fertilizers from animal food production and assessment of their potential ecological risk. Journal of the Science of Food and Agriculture, 103(7), 3638–3644. https://doi.org/10.1002/jsfa.12435

Pavelquesi, S. L. S., de Oliveira Ferreira, A. C. A., Rodrigues, A. R. M., de Souza Silva, C. M., Orsi, D. C., & da Silva, I. C. R. (2021). Presence of Tetracycline and Sulfonamide Resistance Genes in Salmonella spp.: Literature Review. Antibiotics, 10(11), 1314. https://doi.org/10.3390/antibiotics10111314

Picó, Y., Alvarez-Ruiz, R., Alfarhan, A. H., El-Sheikh, M. A., Alshahrani, H. O., & Barceló, D. (2020). Pharmaceuticals, pesticides, personal care products and microplastics contamination assessment of Al-Hassa irrigation network (Saudi Arabia) and its shallow lakes. Science of The Total Environment, 701, 135021. https://doi.org/10.1016/j.scitotenv.2019.135021

Qiu, W., Hu, J., Magnuson, J. T., Greer, J., Yang, M., Chen, Q., Fang, M., Zheng, C., & Schlenk, D. (2020). Evidence linking exposure of fish primary macrophages to antibiotics activates the NF-kB pathway. Environment International, 138, 105624. https://doi.org/10.1016/j.envint.2020.105624

Rasschaert, G., Van Elst, D., Colson, L., Herman, L., de Carvalho Ferreira, H. C., Dewulf, J., Decrop, J., Meirlaen, J., Heyndrickx, M., & Daeseleire, E. (2020). Antibiotic Residues and Antibiotic-Resistant Bacteria in Pig Slurry Used to Fertilize Agricultural Fields. Antibiotics, 9(1), 34. https://doi.org/10.3390/antibiotics9010034

Ricart, S., & Rico, A. M. (2019). Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor. Agricultural Water Management, 217, 426–439. https://doi.org/10.1016/j.agwat.2019.03.017

Robles-Jimenez, L. E., Aranda-Aguirre, E., Castelan-Ortega, O. A., Shettino-Bermudez, B. S., Ortiz-Salinas, R., Miranda, M., Li, X., Angeles-Hernandez, J. C., Vargas-Bello-Pérez, E., & Gonzalez-Ronquillo, M. (2021). Worldwide Traceability of Antibiotic Residues from Livestock in Wastewater and Soil: A Systematic Review. Animals, 12(1), 60. https://doi.org/10.3390/ani12010060

Rodríguez-Serin, H., Gamez-Jara, A., De La Cruz-Noriega, M., Rojas-Flores, S., Rodriguez-Yupanqui, M., Gallozzo Cardenas, M., & Cruz-Monzon, J. (2022). Literature Review: Evaluation of Drug Removal Techniques in Municipal and Hospital Wastewater. International Journal of Environmental Research and Public Health, 19(20), 13105. https://doi.org/10.3390/ijerph192013105

S. Al-Wasify, R., M. Alruwaili, M., S. Aljohani, F., R. Hamed, S., & Ragab, S. (2024). The Efficiency of Wastewater Treatment Plants for the Removal of Antibiotics. https://doi.org/10.5772/intechopen.111999

Saki, M., Farajzadeh Sheikh, A., Seyed-Mohammadi, S., Asareh Zadegan Dezfuli, A., Shahin, M., Tabasi, M., Veisi, H., Keshavarzi, R., & Khani, P. (2022). Occurrence of plasmid-mediated quinolone resistance genes in Pseudomonas aeruginosa strains isolated from clinical specimens in southwest Iran: a multicentral study. Scientific Reports, 12(1), 2296. https://doi.org/10.1038/s41598-022-06128-4

Silori, R., & Tauseef, S. M. (2022). A Review of the Occurrence of Pharmaceutical Compounds as Emerging Contaminants in Treated Wastewater and Aquatic Environments. Current Pharmaceutical Analysis, 18(4), 345–379. https://doi.org/10.2174/1573412918666211119142030

Stigter, T. Y., Miller, J., Chen, J., & Re, V. (2023). Groundwater and climate change: threats and opportunities. Hydrogeology Journal, 31(1), 7–10. https://doi.org/10.1007/s10040-022-02554-w

Strawn, D. G. (2021). Sorption Mechanisms of Chemicals in Soils. Soil Systems, 5(1), 13. https://doi.org/10.3390/soilsystems5010013

Tal, A. (2016). Rethinking the sustainability of Israel’s irrigation practices in the Drylands. Water Research, 90, 387–394. https://doi.org/10.1016/j.watres.2015.12.016

Tasho, R. P., & Cho, J. Y. (2016). Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Science of The Total Environment, 563–564, 366–376. https://doi.org/10.1016/j.scitotenv.2016.04.140

Taylor, P., & Reeder, R. (2020). Antibiotic use on crops in low and middle-income countries based on recommendations made by agricultural advisors. CABI Agriculture and Bioscience. https://doi.org/10.1186/s43170-020-00001-y

Tran, N. H., Reinhard, M., & Gin, K. Y.-H. (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research, 133, 182–207. https://doi.org/10.1016/j.watres.2017.12.029

Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112

Viana, P., Meisel, L., Lopes, A., de Jesus, R., Sarmento, G., Duarte, S., Sepodes, B., Fernandes, A., dos Santos, M. M. C., Almeida, A., & Oliveira, M. C. (2021). Identification of Antibiotics in Surface-Groundwater. A Tool towards the Ecopharmacovigilance Approach: A Portuguese Case-Study. Antibiotics, 10(8), 888. https://doi.org/10.3390/antibiotics10080888

Vo, T.-K.-Q., Bui, X.-T., Chen, S.-S., Nguyen, P.-D., Cao, N.-D.-T., Vo, T.-D.-H., Nguyen, T.-T., & Nguyen, T.-B. (2019). Hospital wastewater treatment by sponge membrane bioreactor coupled with ozonation process. Chemosphere, 230, 377–383. https://doi.org/10.1016/j.chemosphere.2019.05.009

Vymazal, J. (2018). Constructed Wetlands for Water Quality Regulation. In The Wetland Book (pp. 1313–1320). Springer Netherlands. https://doi.org/10.1007/978-90-481-9659-3_234

Wu, W., Ma, M., Hu, Y., Yu, W., Liu, H., & Bao, Z. (2021). The fate and impacts of pharmaceuticals and personal care products and microbes in agricultural soils with long term irrigation with reclaimed water. Agricultural Water Management, 251, 106862. https://doi.org/10.1016/j.agwat.2021.106862

Xiao, W., Zhao, X., Teng, Y., Wu, J., & Zhang, T. (2023). Review on Biogeochemical Characteristics of Typical Antibiotics in Groundwater in China. Sustainability, 15(8), 6985. https://doi.org/10.3390/su15086985

Xu, Y., Yu, X., Xu, B., Peng, D., & Guo, X. (2021). Sorption of pharmaceuticals and personal care products on soil and soil components: Influencing factors and mechanisms. Science of The Total Environment, 753, 141891. https://doi.org/10.1016/j.scitotenv.2020.141891

Yao, L., Wang, Y., Tong, L., Deng, Y., Li, Y., Gan, Y., Guo, W., Dong, C., Duan, Y., & Zhao, K. (2017). Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China. Ecotoxicology and Environmental Safety, 135, 236–242. https://doi.org/10.1016/j.ecoenv.2016.10.006

Yuan, W., Tian, T., Yang, Q., & Riaz, L. (2020). Transfer potentials of antibiotic resistance genes in Escherichia spp. strains from different sources. Chemosphere, 246, 125736. https://doi.org/10.1016/j.chemosphere.2019.125736

Yuan, X., Hu, J., Li, S., & Yu, M. (2020). Occurrence, fate, and mass balance of selected pharmaceutical and personal care products (PPCPs) in an urbanized river. Environmental Pollution, 266, 115340. https://doi.org/10.1016/j.envpol.2020.115340

Zhang, H., Bai, J., Xue, W., Xue, Y., & Zhang, Y. (2022). Quantum chemical prediction of effects of temperature on hydrolysis rate of penicillin under weakly acidic condition. Science of The Total Environment, 806, 150509. https://doi.org/10.1016/j.scitotenv.2021.150509

Zhi, D., Yang, D., Zheng, Y., Yang, Y., He, Y., Luo, L., & Zhou, Y. (2019). Current progress in the adsorption, transport and biodegradation of antibiotics in soil. Journal of Environmental Management, 251, 109598. https://doi.org/10.1016/j.jenvman.2019.109598

Zhou, X., Wang, J., Lu, C., Liao, Q., Gudda, F. O., & Ling, W. (2020). Antibiotics in animal manure and manure-based fertilizers: Occurrence and ecological risk assessment. Chemosphere, 255, 127006. https://doi.org/10.1016/j.chemosphere.2020.127006

Zhuang, S., & Wang, J. (2023). Interaction between antibiotics and microplastics: Recent advances and perspective. Science of The Total Environment, 897, 165414. https://doi.org/10.1016/j.scitotenv.2023.165414

Published

2025-12-18

How to Cite

Quispe-Durand, S. J., & Zirena-Vilca, F. (2025). Groundwater contamination by antibiotics: Review of sources, environmental factors and mobility. Revista Científica Dékamu Agropec, 6(2), 30–44. https://doi.org/10.55996/dekamuagropec.v6i2.331

Most read articles by the same author(s)