Desarrollo y validación de método cromatográfico para la detección y cuantificación de residuos de Ivermectina en agua residual

Autores/as

  • Elvis Jack Colque-Ayma Escuela profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Perú
  • Donald Efrain Merma-Chacca Escuela profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Perú
  • Alejandro Manuel Ecos-Espino Escuela profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Perú
  • Clara Nely Campos-Quiróz Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Perú.
  • José Luis Ramos-Tejada Escuela profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Perú
  • Anyela Pierina Veja-Quispe Escuela profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Perú
  • Franz Zirena-Vilca Escuela profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Perú

DOI:

https://doi.org/10.55996/dekamuagropec.v4i2.192

Palabras clave:

Validación, Antiparasitario, Ivermectina, Cromatógrafo, Cuantificación.

Resumen

Este estudio desarrolló y validó un método de análisis por UHPL-DAD para detectar y cuantificar residuos de Ivermectina (IVM) en agua residual. La implementación de este método, consistió en poder realizar un método robusto y eficiente; donde el tiempo de retención para este residuo en mención fue de 3.1 min. No obstante, los parámetros considerados en el proceso de validación del método analítico fueron: selectividad, linealidad, límite de detección, límite de cuantificación y porcentaje de recuperación; el método es selectivo, el coeficiente de correlación es R2 ≥ 0,99, presenta un límite de detección (LD) de 0,003 µg L-1, un límite de cuantificación (LQ) de 0,01 µg L-1, y un porcentaje de recuperación del 90% (con fortificación de 0,1 µg L-1).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ammon, A. (2020). Contributing to health security in Europe since 2005 – ECDC’s 15th anniversary. Eurosurveillance, 25(20), 1–4. https://doi.org/10.2807/1560-7917.ES.2020.25.20.2000975

Analíticos, M. (2020). Instituto Nacional de Metrologia, Qualidade e Técnologia. Orientação sobre validação de métodos analíticos - DOQ-CGCRE-008. Brasil. http://www.inmetro.gov.br/Sidoq/pesquisa_link.asp?seq_tipo_documento=5&cod_uo_numeracao=00774&num_documento=008

Chedid, M., Waked, R., Haddad, E., Chetata, N., Saliba, G., & Choucair, J. (2021). Antibiotics in treatment of COVID-19 complications: a review of frequency, indications, and efficacy. Journal of Infection and Public Health, 14(5), 570–576. https://doi.org/10.1016/j.jiph.2021.02.001

Cristina, I., & Fontes, S. (2010). Extração em Fase Sólida : Fundamentos Teóricos e Novas Estratégias para Preparação de Fases Sólidas. 2, 13–25.

Elsaid, K., Olabi, V., Sayed, E. T., Wilberforce, T., & Abdelkareem, M. A. (2021). Effects of COVID-19 on the environment: An overview on air, water, wastewater, and solid waste. Journal of Environmental Management, 292(April), 112694. https://doi.org/10.1016/j.jenvman.2021.112694

Fatoki, O. S., Opeolu, B. O., Genthe, B., & Olatunji, O. S. (2018). Multi-residue method for the determination of selected veterinary pharmaceutical residues in surface water around Livestock Agricultural farms. Heliyon, 4(12), e01066. https://doi.org/10.1016/j.heliyon.2018.e01066

Gras, M., Champel, V., Masmoudi, K., & Liabeuf, S. (2020). Self-medication practices and their characteristics among French university students. Therapie. https://doi.org/10.1016/j.therap.2020.02.019

Hiller, C. X., Hübner, U., Fajnorova, S., Schwartz, T., & Drewes, J. E. (2019). Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. Science of the Total Environment, 685, 596–608. https://doi.org/10.1016/j.scitotenv.2019.05.315

Koch, D. E., Bhandari, A., Close, L., & Hunter, R. P. (2005). Azithromycin extraction from municipal wastewater and quantitation using liquid chromatography/mass spectrometry. Journal of Chromatography A, 1074(1–2), 17–22. https://doi.org/10.1016/j.chroma.2005.03.052

Monteiro, S. H., Francisco, J. G., Campion, T. F., Pimpinato, R. F., Moura Andrade, G. C. R., Garcia, F., & Tornisielo, V. L. (2015). Multiresidue antimicrobial determination in Nile tilapia (Oreochromis Niloticus) cage farming by liquid chromatography tandem mass spectrometry. Aquaculture, 447, 37–43. https://doi.org/10.1016/j.aquaculture.2015.07.002

Nieto-Juárez, J. I., Torres-Palma, R. A., Botero-Coy, A. M., & Hernández, F. (2021). Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. Environment International, 155(March). https://doi.org/10.1016/j.envint.2021.106674

Padivitage, N., Adhikari, S., & Rustum, A. M. (2022). Simultaneous determination of ivermectin, clorsulon and their related substances in an injectable finished product by a stability-indicating RP-HPLC method. Journal of Pharmaceutical and Biomedical Analysis, 210, 114580. https://doi.org/10.1016/j.jpba.2022.114580

Pawar, R. P., Durgbanshi, A., Bose, D., Peris-Vicente, J., Albiol-Chiva, J., Esteve-Romero, J., & Carda-Broch, S. (2021). Determination of albendazole and ivermectin residues in cattle and poultry-derived samples from India by micellar liquid chromatography. Journal of Food Composition and Analysis, 103(March), 104111. https://doi.org/10.1016/j.jfca.2021.104111

Pazda, M., Kumirska, J., Stepnowski, P., & Mulkiewicz, E. (2019). Antibiotic resistance genes identified in wastewater treatment plant systems – A review. Science of the Total Environment, 697, 134023. https://doi.org/10.1016/j.scitotenv.2019.134023

Rawson, T. M., Ming, D., Ahmad, R., Moore, L. S. P., & Holmes, A. H. (2020). Antimicrobial use, drug-resistant infections and COVID-19. Nature Reviews Microbiology, 18(8), 409–410. https://doi.org/10.1038/s41579-020-0395-y

Ribani, M., Grespan Bottoli, C. B., Collins, C. H., Fontes Jardim, I. C. S., & Costa Melo, L. F. (2004). Validação em métodos cromatográficos e eletroforéticos. Quimica Nova, 27(5), 771–780. https://doi.org/10.1590/S0100-40422004000500017

Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., & Zhang, Y. (2014). Chemosphere Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. CHEMOSPHERE. https://doi.org/10.1016/j.chemosphere.2014.02.040

Archivos adicionales

Publicado

2023-12-13

Cómo citar

Colque-Ayma, E. J., Merma-Chacca, D. E., Ecos-Espino, A. M., Campos-Quiróz, C. N., Ramos-Tejada, J. L., Veja-Quispe, A. P., & Zirena-Vilca, F. (2023). Desarrollo y validación de método cromatográfico para la detección y cuantificación de residuos de Ivermectina en agua residual. Revista Científica Dékamu Agropec, 4(2), 1–9. https://doi.org/10.55996/dekamuagropec.v4i2.192