Application of solar photocatalysis in the treatment of water for human consumption and wastewater

Authors

  • Wildor Gosgot Angeles Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas 01001, Perú.
  • Yesica Montengro Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas 01001, Perú
  • Merbelita Yalta Chappa Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas 01001, Perú
  • Homar Santillan Gomez Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas 01001, Perú
  • Diana Carina Mori Servan Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas 01001, Perú
  • Roicer Bautista Alcantara Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas 01001, Perú
  • Mariños Lopez Mas Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Perú.

DOI:

https://doi.org/10.55996/dekamuagropec.v4i2.200

Keywords:

Solar energy, water treatment, photocatalysis, SODIS, E. Coli, photoreactor, catalyst, Amazon, disinfection.

Abstract

The efficiency of disinfection of well water and degradation of organic matter of residual water of treatments by solar disinfection (SODIS-CPC) and photocatalysis (TiO2 in suspension [TiO2susp. - CPC], concrete catalyst mixed with TiO2 [CI- CPC] and concrete catalyst impregnated with TiO2 [CII-CPC]) coupled to a 1.15X compound parabolic collector (CPC 1.15X) and a 1.5 L PET bottle photoreactor. The evaluations were carried out in September and October. between 8:00 a.m. and 4:00 p.m., with solar radiation of less than 1000 W/m2. The results showed that the CII-CPC achieved a maximum efficiency of 99.99% of inactivation of total, fecal coliforms and E. coli in the well water. The SODIS-CPC had a maximum BOD and COD removal efficiency of 93.08 and 94.94 %, respectively. The disinfection and degradation efficiency depends on the intensity of the incident radiation, the exposure time, TiO2 concentration and the geometry of the reactor.

Downloads

Download data is not yet available.

References

Alrousan, D. M.A., M. I. Polo-López, P. S.M. Dunlop, P. Fernández-Ibáñez, and J. A. Byrne. 2012. “Solar Photocatalytic Disinfection of Water with Immobilised Titanium Dioxide in Re-Circulating Flow CPC Reactors.” Applied Catalysis B: Environmental 128: 126–34. https://doi.org/10.1016/j.apcatb.2012.07.038.

Amin, M.T., and M.Y. Han. 2009. “Roof-Harvested Rainwater for Potable Purposes: Application of Solar Collector Disinfection (SOCO-DIS).” Water Research 43 (20): 5225–35. https://doi.org/10.1016/J.WATRES.2009.08.041.

Blanco, J., S. Malato, P. Fernández-Ibañez, D. Alarcón, W. Gernjak, and M. I. Maldonado. 2009. “Review of Feasible Solar Energy Applications to Water Processes.” Renewable and Sustainable Energy Reviews 13 (6–7): 1437–45. https://doi.org/10.1016/j.rser.2008.08.016.

Borges, M. E., T. Hernández, and P. Esparza. 2014. “Photocatalysis as a Potential Tertiary Treatment of Urban Wastewater: New Photocatalytic Materials.” Clean Technologies and Environmental Policy 16 (2): 431–36. https://doi.org/10.1007/s10098-013-0637-z.

Byrne, John Anthony, Patrick Stuart Morris Dunlop, Jeremy William John Hamilton, Pilar Fernández-Ibáñez, Inmaculada Polo-López, Preetam Kumar Sharma, and Ashlene Sarah Margaret Vennard. 2015. “A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection.” Molecules 20 (4): 5574–5615. https://doi.org/10.3390/molecules20045574.

Castro-Alférez, María, María Inmaculada Polo-López, Javier Marugán, and Pilar Fernández-Ibáñez. 2018. “Validation of a Solar-Thermal Water Disinfection Model for Escherichia Coli Inactivation in Pilot Scale Solar Reactors and Real Conditions.” Chemical Engineering Journal 331: 831–40. https://doi.org/10.1016/j.cej.2017.09.015.

Castro-Alférez, María, María Inmaculada Polo-López, Javier Marugán, and Pilar Fernández-Ibáñez. 2017. “Mechanistic Modeling of UV and Mild-Heat Synergistic Effect on Solar Water Disinfection.” Chemical Engineering Journal 316: 111–20. https://doi.org/10.1016/j.cej.2017.01.026.

Castro, Artículo Científico, C ; Romero, C ; Salazar, O ; Centeno, A ; Giraldo, Camilo Castro, Carlos Romero, Oscar Salazar, Aristóbulo Centeno, and Sonia A Giraldo. 2011. “Efecto De La Composición Química Del Agua Sobre Su Desinfección Fotocatalítica Effect of the Chemical Composition of Water on Its Photocatalytic Disinfection.” y Div. Cient 14 (1): 117–25.

Cavallini, Grasiele Soares, Dayane Lira, Silva Araujo, and Gabriel Freitas Lima. 2018. “DESINFECÇÃO DE ÁGUA DE POÇO POR RADIAÇÃO SOLAR ( SODIS ): UM ESTUDO NA REGIÃO SUL DO TOCANTINS.” Desafios, no. 2914.

Chong, Meng Nan, Bo Jin, Christopher W K Chow, and Chris Saint. 2010. “Recent Developments in Photocatalytic Water Treatment Technology: A Review.” Water Research 44 (10): 2997–3027. https://doi.org/10.1016/j.watres.2010.02.039.

Colmenares, Juan Carlos. 2019. “Selective Redox Photocatalysis: Is There Any Chance for Solar Bio-Refineries?” Current Opinion in Green and Sustainable Chemistry 15: 38–46. https://doi.org/10.1016/j.cogsc.2018.08.008.

Daghrir, Rimeh, Patrick Drogui, and Didier Robert. 2013. “Modified TiO2for Environmental Photocatalytic Applications: A Review.” Industrial and Engineering Chemistry Research 52 (10): 3581–99. https://doi.org/10.1021/ie303468t.

Eke, Rustu, and Huseyin Demircan. 2013. “Performance Analysis of a Multi Crystalline Si Photovoltaic Module under Mugla Climatic Conditions in Turkey.” Energy Conversion and Management 65 (January): 580–86. https://doi.org/10.1016/j.enconman.2012.09.007.

Guerrant, Richard L., Mark D. Deboer, Sean R. Moore, Rebecca J. Scharf, and Aldo A.M. Lima. 2013. “The Impoverished Gut - A Triple Burden of Diarrhoea, Stunting and Chronic Disease.” Nature Reviews Gastroenterology and Hepatology 10 (4): 220–29. https://doi.org/10.1038/nrgastro.2012.239.

Keane, Donal A., Kevin G. McGuigan, Pilar Fernández Ibáñez, M. Inmaculada Polo-López, J. Anthony Byrne, Patrick S.M. Dunlop, Kevin O’Shea, Dionysios D. Dionysiou, and Suresh C. Pillai. 2014. “Solar Photocatalysis for Water Disinfection: Materials and Reactor Design.” Catalysis Science and Technology 4 (5): 1211–26. https://doi.org/10.1039/c4cy00006d.

Laxma Reddy, P. Venkata, Beluri Kavitha, Police Anil Kumar Reddy, and Ki Hyun Kim. 2017. “TiO2-Based Photocatalytic Disinfection of Microbes in Aqueous Media: A Review.” Environmental Research 154 (December 2016): 296–303. https://doi.org/10.1016/j.envres.2017.01.018.

Malato, S., P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, and W. Gernjak. 2009. “Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends.” Catalysis Today 147 (1): 1–59. https://doi.org/10.1016/j.cattod.2009.06.018.

Mani, Shibu K., Ranjit Kanjur, Isaac S. Bright Singh, and Robert H. Reed. 2006. “Comparative Effectiveness of Solar Disinfection Using Small-Scale Batch Reactors with Reflective, Absorptive and Transmissive Rear Surfaces.” Water Research 40 (4): 721–27. https://doi.org/10.1016/J.WATRES.2005.11.039.

Marques, Andréa Rodrigues, Fátima de Cássia Oliveira Gomes, Marcos Paulo Pontes Fonseca, Júlia Soares Parreira, and Verônica Pinheiro Santos. 2013. “Efficiency of PET Reactors in Solar Water Disinfection for Use in Southeastern Brazil.” Solar Energy 87 (1): 158–67. https://doi.org/10.1016/j.solener.2012.10.016.

McGuigan, Kevin G., Ronán M. Conroy, Hans Joachim Mosler, Martella du Preez, Eunice Ubomba-Jaswa, and Pilar Fernandez-Ibañez. 2012. “Solar Water Disinfection (SODIS): A Review from Bench-Top to Roof-Top.” Journal of Hazardous Materials 235–236: 29–46. https://doi.org/10.1016/j.jhazmat.2012.07.053.

MiarAlipour, Shayan, Donia Friedmann, Jason Scott, and Rose Amal. 2018. “TiO 2 /Porous Adsorbents: Recent Advances and Novel Applications.” Journal of Hazardous Materials 341: 404–23. https://doi.org/10.1016/j.jhazmat.2017.07.070.

Organización Mundial de la Salud. 2018. “Agua.” 2018.

Pichel, N., M. Vivar, and M. Fuentes. 2019. “The Problem of Drinking Water Access: A Review of Disinfection Technologies with an Emphasis on Solar Treatment Methods.” Chemosphere 218: 1014–30. https://doi.org/10.1016/j.chemosphere.2018.11.205.

Qu, Xiaolie, Pedro J.J. Alvarez, and Quin Li. 2013. “Applications of Nanotechnology in Water and Wastewater Treatment.” Water Res 47 (12): 3931–46.

Rizzo, L., A. Della Sala, A. Fiorentino, and G. Li Puma. 2014. “Disinfection of Urban Wastewater by Solar Driven and UV Lamp - TiO2 Photocatalysis: Effect on a Multi Drug Resistant Escherichia Coli Strain.” Water Research 53 (0): 145–52. https://doi.org/10.1016/j.watres.2014.01.020.

Shannon, Mark A., Paul W. Bohn, Menachem Elimelech, John G. Georgiadis, Benito J. Marĩas, and Anne M. Mayes. 2008. “Science and Technology for Water Purification in the Coming Decades.” Nature 452 (7185): 301–10. https://doi.org/10.1038/nature06599.

Shen, Shihui, Maria Burton, Bertram Jobson, and Liv Haselbach. 2012. “Pervious Concrete with Titanium Dioxide as a Photocatalyst Compound for a Greener Urban Road Environment.” Construction and Building Materials 35 (October): 874–83. https://doi.org/10.1016/j.conbuildmat.2012.04.097.

Srikanth, B., R. Goutham, R. Badri Narayan, A. Ramprasath, K. P. Gopinath, and A. R. Sankaranarayanan. 2017. “Recent Advancements in Supporting Materials for Immobilised Photocatalytic Applications in Waste Water Treatment.” Journal of Environmental Management 200: 60–78. https://doi.org/10.1016/j.jenvman.2017.05.063.

Threrujirapapong, T., W. Khanitchaidecha, and A. Nakaruk. 2017. “Treatment of High Organic Carbon Industrial Wastewater Using Photocatalysis Process.” Environmental Nanotechnology, Monitoring and Management 8 (December): 163–68. https://doi.org/10.1016/j.enmm.2017.07.006.

Vivar, M., and M. Fuentes. 2016. “Using Solar Disinfected Water: On the Bacterial Regrowth over 1-Week of Water Usage Including Direct Intake after Sun Exposure and Long-Term Dark Storage.” Solar Energy 131: 138–48. https://doi.org/10.1016/j.solener.2016.02.044.

Vonberg, David, Jan Vanderborght, Nils Cremer, Thomas Pütz, Michael Herbst, and Harry Vereecken. 2014. “20 Years of Long-Term Atrazine Monitoring in a Shallow Aquifer in Western Germany.” Water Research 50 (March): 294–306. https://doi.org/10.1016/J.WATRES.2013.10.032.

Xing, Zipeng, Jiaqi Zhang, Jiayi Cui, Junwei Yin, Tianyu Zhao, Junyan Kuang, Ziyuan Xiu, Ning Wan, and Wei Zhou. 2018. Recent Advances in Floating TiO 2 -Based Photocatalysts for Environmental Application. Applied Catalysis B: Environmental. Elsevier B.V. https://doi.org/10.1016/j.apcatb.2017.12.005.

Yahya, N., F. Aziz, N. A. Jamaludin, M. A. Mutalib, A. F. Ismail, W. N. W. Salleh, J. Jaafar, N. Yusof, and N. A. Ludin. 2018. “A Review of Integrated Photocatalyst Adsorbents for Wastewater Treatment.” Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2018.06.051.

Zhang, Ying, Muttucumaru Sivakumar, Shuqing Yang, Keith Enever, and Mohammad Ramezanianpour. 2018. “Application of Solar Energy in Water Treatment Processes: A Review.” Desalination 428 (October 2017): 116–45. https://doi.org/10.1016/j.desal.2017.11.020.

Published

2023-12-13

How to Cite

Gosgot Angeles, W., Montengro, Y., Yalta Chappa, M., Santillan Gomez, H., Mori Servan, D. C., Bautista Alcantara, R., & Lopez Mas, M. (2023). Application of solar photocatalysis in the treatment of water for human consumption and wastewater. Revista Científica Dékamu Agropec, 4(2), 67–84. https://doi.org/10.55996/dekamuagropec.v4i2.200

Most read articles by the same author(s)